Uniwersytet Kazimierza Wielkiego w Bydgoszczy - Centralny System UwierzytelnianiaNie jesteś zalogowany | zaloguj się
katalog przedmiotów - pomoc

Mechanika komputerowa 1300-Mt11MK-SD
Wykład (WYK) Semestr zimowy 2020/21

Informacje o zajęciach (wspólne dla wszystkich grup)

Liczba godzin: 30
Limit miejsc: (brak limitu)
Zaliczenie: Zaliczenie na ocenę
Rygory zaliczenia zajęć: zaliczenie na ocenę
Literatura uzupelniająca: 1. Włodzimierz Sosnowski, Numeryczna symulacja, analiza wrażliwości i optymalizacja nieliniowych procesów deformacji konstrukcji, Bydgoszcz 2003
2. Jan Szmelter, Metody komputerowe w mechanice, Biblioteka Naukowa Inżyniera, Warszawa 1980
3. G. Rakowski, Z. Kacprzyk, Metoda Elementów Skończonych w Mechanice Konstrukcji, Oficyna Wydawnicza PW, Warszawa 2005

Metody dydaktyczne: ćwiczenia laboratoryjne
wykład kursowy
Literatura:

1. Ward Cheney, David Kinkaid, Numerical Mathematics and Computing, sixth edition, Thomson Brookes Cole, 2008

2. Michael T. Heath, Scientific Computing, An Introductionary Survey, Mc Graw Hill 2002

3. David Kincaid, Ward Cheney, Numerical Analysis, Mathematics of scientific Computing, The University Texas at Austin, 2002 (polskie tłumaczenie: Analiza numeryczna, WNT 2005)

4. Yijun Liu, Finite Element method, Lecture Notes, http://urbana.mie.uc.edu/yliu

5. Michael T. Heath http://www.cse.illinois.edu/iem/index.html Interactive examples

Efekty uczenia się:

W1. Zna i rozumie podstawowe pojęcia oraz algorytmy związane z metodami numerycznymi (MN) , a także z zakresu MES i mechaniki (K_W04).

W2. Zna problemy oceny dokładności, jednoznaczności i stabilności poznawanych metod numerycznych, w tym MES (K_W04).

Metody i kryteria oceniania:

kolokwia

Zakres tematów:

1. Wprowadzenie do przestrzeni unitarnych. Obliczanie wartości własnych i wektorów własnych macierzy,

2. Własności zapisu zmiennopozycyjnego. Oszacowania błędów zaokrągleń w obliczeniach komputerowych. Przykład rozwiązania układu r-ń: okrąg + prosta z macierzą jakobianu,

3. Rozwinięcie funkcji skalarnej w szereg Taylora,

4. Dokładność w/w rozwinięcia funkcji w szereg Taylora na przykładzie wielomianów. Metoda iteracyjna Newtona,

5. Teoria dot. metod iteracyjnych. Uwzględnianie więzów w równaniach MES,

6. Ppojęcia podstawowe oraz sformułowanie wariacyjne MES,

7. Wzór Taylora dla wielkości wektorowych. Macierz Jakobianu,

8. Normy wektorów i macierzy, wskaźnik uwarunkowania.

Grupy zajęciowe

zobacz na planie zajęć

Grupa Termin(y) Prowadzący Miejsca Akcje
1 wielokrotnie, środa (niestandardowa częstotliwość), 17:00 - 21:00, (sala nieznana)
Ihor Turchyn, Mariusz Kaczmarek 19/19 szczegóły
Wszystkie zajęcia odbywają się w budynku:
Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Uniwersytet Kazimierza Wielkiego w Bydgoszczy.